ICP-MS Standard Operating Procedures

GGC Chemistry Instrumentation Protocol Series

04/19/2018

Kathryn Zimmermann

678-951-6316 kzimmermann@ggc.edu

and

Michael Kirberger

678-371-0639 mkirberger@ggc.edu

Introduction

Georgia Gwinnett College (GGC) currently maintains a PerkinElmer Elan DRC-e Inductively-Coupled Plasma Mass Spectrometer (ICP-MS, **Figure 1A**). The instrument is located in Building H, room 1133, and is utilized routinely by faculty and students for research and educational purposes. Dr. Kathryn Zimmerman currently supervises maintenance, operation and troubleshooting associated with the instrument.

The ICP-MS can detect very low concentrations (ppt) of metals and some non-metals by ionizing the sample in an electrically conductive plasma and then separating and quantifying sample ions using a mass spectrometer.

The objective of this protocol is to provide an introduction to basic operation of the instrument for faculty and students interested in utilizing ICP-MS for instructional purposes and/or to conduct undergraduate research projects. Faculty advising students on this instrument should undergo training before operating instrument alone.

I. Getting Started

A. Sample Preparation

Samples should be digested in HNO₃, detailed in your lab protocol, and then diluted to 2% HNO₃ (by volume) using DI or MiliQ H₂O. Standards for standard curve can be diluted from the Instrument Calibration Standard 2 (Perking Elmer Pure Plus) in the same HNO₃ matrix as your samples. Labeled samples may be stored in the shared refrigerators in the service hallway. When you have completed your project, please dispose of your samples in an appropriate time frame.

B. Instrument Prep/Setup

1. Check waste container.

Before running samples, check the waste container located on the floor beside the instrument (**Figure 1B**). If the container is full, please contact Dr. Zimmermann or Janet Whelan.

Figure 1: (A) PerkinElmer Elan DRC-e ICP-MS. (B) Waste container for ICP-MS, located on floor on right-hand side of instrument.

2. Open lines for chiller.

The chiller is the cooling system for the instrument electronics. Prior to use of the instrument, the chiller needs to be started. There are two pairs of valves connecting the instrument to the chiller: one pair is located in H1133 above and to the right of the instrument, and the second pair is located in the back prep hall above the chiller unit. Both pairs of valves must be moved from the closed positions (**Figure 2A**) to the open positions (**Figure 2B**).

Figure 2: (A) Chiller lines in H 1133 in closed positions, and (B) open positions. (C) Chiller located in prep hallway.

3. Turn on power to the chiller.

The chiller (Figure 2C) is located in the back prep hall. Once the power is turned on, confirm that the temperature is maintained at or near 18 °C.

4. Open Argon.

- a. Open valve on the compressed Argon tank (Figure 3A).
- b. Open valve on wall to allow flow of Argon into instrument (Figure 3B, 3C).

Figure 3: (A) Valve on Argon Compressed gas tank. (B) Argon line to instrument closed. (C) Argon line to instrument open.

5. Set up Sampling Lines.

- a. Stretch sampling lines into position over the peristaltic pump and clamp into place.
- b. Pump lines are color coded: gray tabs for waste, black tabs for sample wand and blue/orange tabs for internal standard wand.

c. There are two sampling wands. The smaller inner diameter (i.d.) wand (blue/orange tabs) is for the internal standard, while the larger i.d. wand (black tabs) is for the sample or calibration standard.

Figure 4: (A) Overhead view of sampling lines. (B) Side view of lines properly clamped onto peristaltic pump [4]. [1] Sample/calibration line (black), [2] internal standard (blue/orange), [3] waste wand (gray) and [4] peristaltic pump.

6. Software Set up.

- a. On the Desktop open the ICP-MS User folder.
- b. Open the Instrument Log folder and the Elan 6000 Log Excel Spreadsheet (Figure 5).

inuite a Billionen	· There with · Diet Los	all Room Manufalder									ALC . 171
	No.	Determined	Time	6 m	1.4	8	c.	0	E.		6
C Favorites			oppe	347	FLAN	6000					
Desktop	Q Elan 6000 Log	38/27/2017 20:56	Microsoft Excel W	12.68	1 ELAN	6000					
Downsoads					4						
30 Recent Places					3						
Cherning					o Date	User	Faculty Advisor	Instrument Pressure Reading	Argon Level	Sample Name	Sample Descripti
Contraction of the second					-/ 1///20	is zimmermann	Timmeren von feb vo	6.20E-00	/N/A		Turned alarma an
Do					0 1/15/200	to Jones	Denmermaneyknan	5.400-00			Torneo piasma ori
A Maria					10 1/22/201	6 inner	7immermann/Khan	2 305-00			
a Nusic					11 29-14	in innes/timmermann	Disting indentify kinds	2.302-54	-		
Nidere					12 1.54	h innes/zimmermann		6.20F.06			
E HOEVS					13 4-Fe	b Zimmermann		6.205-06			
Committee .					14						
B. Land Birk and					15 5-Fe	b lones	Zimmermann/Khan	2.00E-00	1		
Remarked Cab (E)					16						
- nemovedie Disk (E)					17 9-Fe	b Zimmermann		3.3E-6/6.1E-6	N/A		
a Mariana					18						
					19			2.20E-05	é:		
					20						
					21 15-Fe	b jones	Zimmermann	3.5E-6/6.7E-6	2500 psi		
					22 19-Fe	b Jones	Zimmermann	6.00E-06	6		
					23 19-Fe	b Zimmermann					
					24 22-Fe	b	Zimmermann	2.7E-6/5.1E-6	1200 PSI		
					25 23-Fe	b	Zimmermann	3.4E-6/5.1E-6	900 PSI		
					26 24-Fe	b Jones	Zimmermann	5.70E-06	· · · · · · · · · · · · · · · · · · ·		ran blank and star
					27						
					28 10-M	ar winke					
					20 12.44	ar Katu		2 75 6/7 75 6			
					22 20.44	a shey	Timmerman	4.95.6/97.6			
					32	n winney	Drinighter	4.96-0076-0			
					33 21-M	ar whitney	Zimmermann	3.75-6/			
					34 25-M	ar whitney	Zimmermann	2.7E-6/6.6E-6			
					35 28-M	ar		1.7E-6/			
					36 5/16/201	6 Whitney	Zimmermann	0.0000021/2.9E-6			
					37						
					38 29-AL	ig Niesha	Zimmermann	5.00E-06	i 1000 psi		standards
					39	Niesha	Zimmermann	1.00E-08	3 900 psi		
					40 10/6/201	17 Dr. Lee/Bao/Lennox/Jake/Zimmermann		5.90E-06	6		performance stan
					41		Kirberger				
					42		Dr. Lee	1.10E-06	6		
					43 10/27/201	17 Kirberger		1.20E-06	1		
					44						
					45						
					40						
					40						
					40						
					50						
						Sheetl		1.1			
	No. and the	1000 00000									

Figure 5: Instrument Log File for ICP-MS

- c. Fill in the appropriate information regarding your use.
- d. If not already open, click the Elan Icon (Figure 6A) to load the ICP/MS software (Figure 6B).

Figure 6: (A) Two options on desktop for opening Elan software to run ICP-MS. (B) Elan software.

7. Open a new dataset (Figure 7).

- a. Click the R icon on the left hand side of the screen.
- b. Click the Dataset icon, select "New" and use the date "MMDDYY" as the dataset name.
- c. Select Create.

🦓 EL	a ELAN Instrument Control Session						
File	Edit Analysis Options Automation Window Hel	lp					
Met	Image: Method Sample Dataset Image: Method						
2	Instrument						
R	Front Panel Diagnostics Faults Getter Service						
		System Status					
È		Ready					
		Plasma Vacuum Start Start Stop Stop Ignition Sequence					
	Vacuum Pressure 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 - 1950 -	Is9 NF Power					

Figure 7: Opening a new dataset.

a. Insert both sampling wands in 2% nitric acid (HNO₃) solution (Figure 8).

Figure 8: Both sampling wands in 2% HNO₃. The HNO₃ used is trace clean so that there are no metal contaminants.

- b. Start the peristaltic pump.
- c. Select the Device tab from the Elan software (Figure 9, red rectangle).
- d. Enter "20.0" in the box for Speed (rpm) (**Figure 9**, blue rectangle). This will start the pump which will pull the 2% HNO₃ into the sampling lines.
- e. Let the pump run for ~1 min.

Figure 9: Instrument and Device controls.

9. Light the plasma.

- a. Select the Instrument tab (**Figure 9**, orange rectangle). If the System Status displays the green ready bar (**Figure 9**, green bar) the instrument is ready to light the plasma.
- b. Click the Start button (Figure 9, purple rectangle) to light the plasma.
- c. When the plasma lights, you will see a white glow from the instrument interface (Figure 10). CAUTION: ONLY OBSERVE PLASMA THROUGH THE UV SHIELD LOCATED ON THE INSTRUMENT.
- d. You will also hear the sound of the interface gate valve open (swish). There may be a delay between when the start button is selected, and the valve opens, so wait approximately 15 seconds.
 - i. If the torch fails to ignite, press the Plasma Stop button.
 - ii. After waiting 30 seconds, retry the Plasma Start. This could take up to a minute to light. This may take several tries.
- e. Let the plasma stabilize for 10-15 min with the wands in the 2% HNO₃ solution.

Figure 10: Lit plasma (white glow) at instrument interface.

10. Perform Daily Performance Analysis.

- a. Fill the centrifuge tube labeled Daily Performance Solution (Figure 11A) with Smart Tune Solution (Figure 11B).
- b. Place both wands into the Daily Performance Solution (**Figure 11A**). Run solution through both lines for approximately 30 s. Do NOT place wands directly into the Smart Tune Solution bottle.

Figure 11: (A) Sampling wands inserted into the Daily Performance Solution. (B) Smart Tune Solution for daily performance analysis. (C) SmartTune Wizard Summary of performance results.

- c. Open "SmartTune Wizard Tab" and right-click on Daily Performance Check.
- d. Select Quick Optimize. After Optimization has finished, a report will pop up indicating whether the instrument passed or failed (**Figure 11C**).
- e. If the instrument passes, return wands to the 2% HNO₃ rinse lines.
- f. If the instrument does not pass:
 - i. Right-click on Nebulizer Gas-flow and select Quick Optimize.
 - ii. Open the "Optimize" tab. If this reads (Modified) click File \rightarrow Save.
 - iii. Return wands to the 2% HNO₃ rinse lines.

11. Set up method for analysis.

- a. From main window, click on *File*→*Open*→*Select Method* to locate the method file for analysis. If you need to set up a new method file, please talk to Dr. Zimmermann.
- b. In the Method window, select the Calibration tab (Figure 12).
- c. In the table, enter (or alter) the concentration for each of your standards (Std 1, Std 2...Std n) depending on dilutions selected for standards (μ g/L).
- d. As seen in **Figure 12**, do not enter values for elements that have a triangle in the internal standard column.

6	File	Edit	Analysis	Options Aut	comation Window	Help						
м	ethod	Samp	le Datase	t Realtime	Interactive CalibView	w RptOptic	on RptView	SmartTune	Optimize T	uning DRC N	ID Instrume	ा Devices
2	🕈 💍 Timing 🏡 Processing 🔩 Equation 👔 Sampling 🔐 Devices 🔍 QC											
R	● E © S	xtern td. A	al Std. ddition									
3		Int Std	Analyte (*)	Mass (amu)	Curve Type (*)	Sample Units (*)	Standard Units (*)	Std 1	Std 2	Std 3	Std 4	Std 5
	1		Li	6.0151	Linear Thru Zero	ug/L	ug/L					
9	2	Ŀ.	Be	9.0122	Linear Thru Zero	ug/L	ug/L	20	50	100	250	500
*	3	Г	AI	26.9815	Linear Thru Zero	ug/L	ug/L	20	50	100	250	500
Ē	4	Þ	Sc	44.9559	Linear Thru Zero	ug/L	ug/L					
G)	5		-	50.944	Linear Thru Zero	ug/L	ug/L	20	50	100	250	500
9	6	1	Cr	51.9405	Linear Thru Zero	ug/L	ug/L	20	50	100	250	500
•	7		Cr	52.9407	Linear Thru Zero	ug/L	ug/L	20	50	100	250	500
	8		Mn	54.9381	Linear Thru Zero	ug/L	ug/L	20	50	100	250	500
1	9		Co	58.9332	Linear Thru Zero	ug/L	ug/L	20	50	100	250	500
-	10		Ni	59.9332	Linear Thru Zero	ug/L	ug/L	20	50	100	250	500

Figure 12: (A) Example of calibration screen. Internal standards are indicated with arrows (column 1). (B) Calibration standard solutions for ICP-MS analysis.

12. Sample analysis.

- a. Insert blue/orange wand (smaller i.d.) into the internal standard solution (**Figure 13A**). This wand will remain in the internal standard for the duration of the analysis.
- b. Insert black wand (larger i.d.) initially into blank solution (sample matrix, e.g., 2% HNO₃, with no analytes).
- c. Allow solutions to run through wands for ~1 min to clean wands and tubing.
- d. Select Sample Window icon (Figure 13B).
- e. With the sample wand still in the blank solution, select "Analyze Blank."

Figure 13: (A) Sample wand in 2% HNO₃ blank solution and internal standard wand positioned in internal standard solution. (B) Sample window for selection of sample type (Blank, Standard, or Sample).

- f. A Measurement Status screen will appear, which will show a progress bar for the duration of the Blank analysis (Figure 14), followed by a report screen (Figure 15).
 - i. Note that there is no concentration data listed under the Mean column, because this is the Blank.

Measurement Status	
Acquiring Data for Blank	
	<<
Acquisition Step Replicate 1, Reading 1	Skip Delays
DRC Group Scanning group 1 of 1	Skip Current
Mode Status Group 1	Stop After Current
· ·	Stop

Figure 14: Progress bar for data acquisition.

			GC	GC Che	mistry	Dept.	ELA	N D	RC I	CP-MS	Summary	, Report
5	Sample	ID: Blank	r									
8	Sample Date/Time: Monday November 13 2017 12:18:03											
5	Sample Tv	pe: Sample										
8	Sample De	escription:										
E	Batch ID:											
N	lethod Fil	e: C:\Elanda	ata\Metho	d\Snail Ana	ilys is.mth							
0)atas et Fi	le: C:\Elanda	ata\Data	Set\2016-12	14\Blank.41	5						
8	Sample Pr	ep Volume ((mL):									
- 1	nitial Sam	ple Quantity	(mg):									
A	liquot Vol	ume (mL):										
	oiluted To	Volume (mL	_):									
_	Analyte	Mass	Mean	Std.Dev.	Units	Meas.	Intens.	Mean	Blank	Intensity	Intens. RSD	
>	Li	6			ug/L			265.7			3.0	
Ļ	Be	9			ug/L			3.7			56.8	
	AI	27			ug/L		2	577.7			1.0	
>	SC	45			ug/L		125	939.0 760.6			0.6	
	V 0-	51			ug/L		2	102.0			2.0	
	Cr	52			ug/L		2	404.0 253.0			0.9	
	Mn	55			ug/L			287.2			7.0	
	Co	59			ug/L			1110			15.8	
	Ni	60			ug/L			124.3			8.2	
	Cu	63			ug/L		1	596.8			3.6	
	Cu	65			ug/L			800.7			2.1	
l ř	Zn	66			ua/L		1	819.9			10.6	
	Zn	67			ug/L			297.3			10.0	
L i	Zn	68			ug/L		1	281.1			13.1	

Figure 15: Example dataset for analysis of Blank.

- g. Without exiting the Sample window, switch the black sampling wand from the Blank to the Standard 1 solution (i.e., the concentration listed as Standard 1 in the method).
- h. Allow the line to flush with this solution for ~1 min.
- i. As seen highlighted in Figure 16:
 - i. Indicate the Standard Number in the Number box.
 - ii. Make sure the Type is listed as Standard.
 - iii. Make sure the "Write to Data Set" box is checked, then click on Analyze Standard.

🙆 El	ELAN Instrument Control Session - [Samples - C:\Elandata\Sample\030917.sam]											
25	🖞 File Edit Analysis Options Automation Window Help											
E Met	ethod Sample Dataset Real	time Interactive	CalibView RptOptic	n RptView	SmartTune (Optimize	-🏹- Tuning	DRC MD	Instrument	। टि Devices	€ ¥ Scheduler	Chromera
2	Manual Batch											
	Standard Number 1 St Sample	De andard Details	Ar	Analyze Blank alyze Standaro nalyze Sample	1							
	Analysis	er Each Analysis										
	Save Currer	nt to Dataset										

Figure 16: Setting up standard curve analysis.

- j. Repeat this process for each standard, changing the Number as you switch the wand between each standard.
- k. After each standard is analyzed, a report for that standard is generated (Figure 17).

	Sample	ID: Sta	naara 4						
	Sample D	ate/Time:	Friday, Apr	il 13, 2018	16:15:00				
	Sample Type: Sample								
	Sample Description:								
	Batch ID:								
	Method File: C:\Elandata\Method\BIODIESEL2018.mth								
	Dataset F	ile: C:\Ela	n data\Data	Set\041318	Standard 4	4.005			
	Sample P	rep Volum	ne (mL):						
	Initial San	nple Quan	itity (mg):						
	Aliquot Vo	lume (mL	.):						
	Diluted To	Volume	(mL):						
	Analyte	Mass	Mean	Std.Dev.	Units	Meas. Intens. Mean	Blank Intensity	Intens. RSD	
Г	> Li	6			ug/L	525.0	534.3	3.8	
L	Be	9	248.96	10.21603	ug/L	82758.7	2.0	0.8	
Γ	AI	27	251.41	0.36027	ug/L	1708819.2	6955.3	0.4	
Ŀ	> Sc	45			ug/L	397968.0	416241.8	0.4	
	V	51	247.64	2.06783	ug/L	2899075.1	1287.3	1.0	
	Cr	52	248.69	0.60444	ug/L	2614305.0	5970.6	0.6	
	Cr	53	251.72	0.51868	ug/L	335855.5	463.3	0.6	
	Mn	55	248.18	2.64397	ug/L	4386236.9	1333.4	1.3	
	Co	59	247.55	2.84551	ug/L	3155031.0	176.7	1.3	
	Ni	60	251.09	2.16310	ug/L	702768.7	306.7	0.6	
	Cu	63	250.56	1.84404	ug/L	1476948.5	791.7	0.7	
L	Cu	65	250.74	1.33540	ug/L	727549.8	432.3	0.3	
Γ	Zn	66	251.48	2.60948	ug/L	380250.4	892.4	0.6	
	Zn	67	251.48	1.62509	ug/L	67296.2	166.3	0.6	
	Zn	68	251.37	1.01652	ug/L	283311.2	707.4	0.4	
Ŀ	> Ge	74			ug/L	54098.1	55134.3	0.7	

GGC Chemistry Dept. ELAN DRC ICP-MS Summary Report

Figure 17: Example dataset for a calibration standard.

I. The calibration curve can be viewed as it is being made by selecting the CalibView window icon (Figure 18).

Figure 18: Calibration view. Users may switch the calibration element being viewed to compare calibration curves for all analytes.

- m. Once all calibration standards have been analyzed, samples can be analyzed.
- n. To analyze samples, return to the Sample window.
- o. Place the sampling wand into your digested sample tube, enter a Sample identifying name and select Analyze Sample (Figure 19).

anual Batch	
Standard Number Type	Analyze Blank
6 Standard -	Analyze Standard
Sample	Analyze Sample
Analysis Image: Second state Image: Second st	

Figure 19: Initiating a sample analysis.

p. At the end of the sample run, a summary report is generated with sample ID at the top of the page and Mean analyte concentrations reported in ppb (Figure 20).

GGC Chemistry Dept. ELAN DRC ICP-MS Summary Repor

Sample ID: Biodiesel 1 Sample Date/Time: Friday, April 13, 2018 17:13:13 Sample Description: Batch ID: Method File: C:\Elandata\Method\BIODIESEL2018.mth Dataset File: C:\Elandata\DataSet\041318\Biodiesel 1.016 Sample Prep Volume (mL): Initial Sample Quantity (mg): Aliquot Volume (mL): Diluted To Volume (mL):

	Analyte	Mass	Mean	Std.Dev.	Units	Meas. Intens. Mean	Blank Intensity	Intens. RSD
[>	Li	6			ug/L	738.4	534.3	9.9
L	Be	9	0.00	0.00136	ug/L	4.0	2.0	25.0
Ē	AI	27	24.24	0.91445	ug/L	228408.3	6955.3	1.8
>	Sc	45			ug/L	571009.2	416241.8	2.8
i.	V	51	3.13	0.10210	ug/L	52480.9	1287.3	0.4
i.	Cr	52	11.21	0.39244	ug/L	170366.6	5970.6	0.6
1	Cr	53	1.01	0.07825	ug/L	2518.7	463.3	4.3
1	Mn	55	0.25	0.01432	ug/L	7866.7	1333.4	3.0
1	Co	59	0.36	0.01379	ug/L	6606.4	176.7	1.1
1	Ni	60	0.45	0.03500	ug/L	2098.9	306.7	4.6
1	Cu	63	0.55	0.04397	ug/L	5218.2	791.7	5.0
L	Cu	65	0.55	0.02427	ug/L	2623.4	432.3	1.8
Г	Zn	66	70.03	2.76075	ug/L	135064.3	892.4	0.8
1	Zn	67	63.91	2.92325	ug/L	21908.0	166.3	1.3
	Zn	68	70.92	2.22585	ug/L	101761.1	707.4	0.6
>	Ge	74			ug/L	68377.1	55134.3	3.3
	Kr	83	1.30	0.03395	ug/L	-271.5	55.0	1.4
	Sr	88	1.22	0.03271	ug/L	47410.6	344.0	1.0
	As	75	0.10	0.00418	ug/L	428.3	165.0	3.5
1	Se	77	0.16	0.07393	ug/L	112.0	69.3	7.6
L	Se	82	-0.05	0.05474	ug/L	78.3	73.0	13.4
Г	Мо	98	0.02	0.00106	ug/L	198.0	27.7	0.5
	Ag	107	0.02	0.00421	ug/L	450.0	90.3	11.2
	Cd	111	0.04	0.01145	ug/L	302.6	129.2	15.3
	Cd	114	0.00	0.00178	ug/L	15.4	-0.6	83.6
>	In	115			ug/L	263824.9	207232.4	4.0
	Sb	121	3.19	0.13314	ug/L	32122.3	44.3	0.2
L	Sb	123	3.16	0.12942	ug/L	24507.6	28.2	0.2
Г	Ba	135	100.27	2.88136	ug/L	362378.8	391.7	0.5
	Ba	137	102.69	3.17660	ug/L	632757.1	701.7	0.1
>	Tb	159			ug/L	408606.3	289595.0	3.1
	Pb	208	0.11	0.05092	ug/L	6798.1	744.0	37.1
L	Bi	209	-5639.136	16.83424	ug/L	490.0	555.0	4.6
Γ	Na	23	465.55	21.91588	ug/L	4051246.3	66270.4	2.6
	Mg	24	3.63	0.12304	ug/L	22967.0	1645.1	1.0
	К	39	142.15	6.10472	ug/L	2293260.6	184224.6	1.7
	Ca	44	80.68	4.44985	ug/L	90879.7	31342.9	1.5
	Fe	54	-34.08	2.45310	ug/L	112569.8	115496.8	0.4
L>	Sc	45			ug/L	571009.2	416241.8	2.8

Sample ID: Biodiesel 1

Report Date/Time: Friday, April 13, 2018 17:15:38

Figure 20: Example sample dataset.

- a. After completion of all sample analyses, rinse wands in 2% HNO₃ (~1 min), then DI water (~1 min), then allow some air to flow through them (~1 min).
- b. Select Instrument (Figure 21, orange rectangle), then Plasma Stop (Figure 21, purple rectangle).
- c. Select Device (Figure 21, red rectangle). Set Peristaltic Pump Speed to zero (Figure 21, blue rectangle).

Eg. ELAN Instrument Control Session	
File Edit Analysis Options Automation Window Help	
Image: Sample Detaset Image: Realize a line active Image: Realive Ima	Image: Big Direction Image: Big Direction ng DRC MD Instrument Devices Scheduler Chromens
	ta Device Control
R Front Panel Diagnostics Faults Getter Service	Peristaltic AutoSampler FIAS HGA
D System Status Ready Ready	Status Pump speed was set to: -20.0
Plasma Vacuum Start Start Stop	Speed (rpm) 20.0 Options Connect
2 Igntion Sequence	Direction Disconnect
	 Internal Pump External Pump
6.3e-006 Torr 0.88 L/min 1450 Watts	Optimization - C:\Elandata\Optimize\Default.dac
Lens Voltage - Nnang Stage Voltage - Pelse Stage Voltage	Auto Optimize Manual Adjust Dual Detector Calibration AutoLens Cell Parameters
	Optimize Analyte Get Analyte List
6.5 Volts 900 Volts	Parameter Description Parameter Range RPa RPa RPa Start Value 0 Start Value

Figure 21: Termination steps.

•

- d. Turn off chiller, then close all four chiller lines in both H1133 and the back prep hall.
- e. Close both argon gas valves.
- f. Unclamp sampling lines from the peristaltic pump. This increases their lifetime of use.
- g. All report data from the completed analysis can be found, based on date and time, under:

Documents → PDF Files → Autosave

Analyze your data! Good Luck!